- PyTorch Tutorial
- PyTorch - Home
- PyTorch - Introduction
- PyTorch - Installation
- Mathematical Building Blocks of Neural Networks
- PyTorch - Neural Network Basics
- Universal Workflow of Machine Learning
- Machine Learning vs. Deep Learning
- Implementing First Neural Network
- Neural Networks to Functional Blocks
- PyTorch - Terminologies
- PyTorch - Loading Data
- PyTorch - Linear Regression
- PyTorch - Convolutional Neural Network
- PyTorch - Recurrent Neural Network
- PyTorch - Datasets
- PyTorch - Introduction to Convents
- Training a Convent from Scratch
- PyTorch - Feature Extraction in Convents
- PyTorch - Visualization of Convents
- Sequence Processing with Convents
- PyTorch - Word Embedding
- PyTorch - Recursive Neural Networks
- PyTorch Useful Resources
- PyTorch - Quick Guide
- PyTorch - Useful Resources
- PyTorch - Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
PyTorch - Word Embedding
In this chapter, we will understand the famous word embedding model − word2vec. Word2vec model is used to produce word embedding with the help of group of related models. Word2vec model is implemented with pure C-code and the gradient are computed manually.
The implementation of word2vec model in PyTorch is explained in the below steps −
Step 1
Implement the libraries in word embedding as mentioned below −
import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F
Step 2
Implement the Skip Gram Model of word embedding with the class called word2vec. It includes emb_size, emb_dimension, u_embedding, v_embedding type of attributes.
class SkipGramModel(nn.Module): def __init__(self, emb_size, emb_dimension): super(SkipGramModel, self).__init__() self.emb_size = emb_size self.emb_dimension = emb_dimension self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse = True) self.init_emb() def init_emb(self): initrange = 0.5 / self.emb_dimension self.u_embeddings.weight.data.uniform_(-initrange, initrange) self.v_embeddings.weight.data.uniform_(-0, 0) def forward(self, pos_u, pos_v, neg_v): emb_u = self.u_embeddings(pos_u) emb_v = self.v_embeddings(pos_v) score = torch.mul(emb_u, emb_v).squeeze() score = torch.sum(score, dim = 1) score = F.logsigmoid(score) neg_emb_v = self.v_embeddings(neg_v) neg_score = torch.bmm(neg_emb_v, emb_u.unsqueeze(2)).squeeze() neg_score = F.logsigmoid(-1 * neg_score) return -1 * (torch.sum(score)+torch.sum(neg_score)) def save_embedding(self, id2word, file_name, use_cuda): if use_cuda: embedding = self.u_embeddings.weight.cpu().data.numpy() else: embedding = self.u_embeddings.weight.data.numpy() fout = open(file_name, 'w') fout.write('%d %d\n' % (len(id2word), self.emb_dimension)) for wid, w in id2word.items(): e = embedding[wid] e = ' '.join(map(lambda x: str(x), e)) fout.write('%s %s\n' % (w, e)) def test(): model = SkipGramModel(100, 100) id2word = dict() for i in range(100): id2word[i] = str(i) model.save_embedding(id2word)
Step 3
Implement the main method to get the word embedding model displayed in proper way.
if __name__ == '__main__': test()
Advertisements